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M
odern developments 
in light microscopy 
have allowed the 
observation of cell 
deformation with 

remarkable spatiotemporal resolution 
and reproducibility. Analyzing such phe-
nomena is of particular interest for the 
signal processing and computer vision 
communities due to the numerous 
computational challenges involved, 
from image acquisition all the way to 
shape analysis and pattern recognition 
and interpretation. This article aims at providing an up-to-date 
overview of the problems, solutions, and remaining challenges in 
deciphering the morphology of living cells via computerized 
approaches, with a particular focus on shape description frame-
works and their exploitation using machine-learning techniques. 
As a concrete illustration, we use our recently acquired data on 
amoeboid cell deformation, motivated by its direct implication in 
immune responses, bacterial invasion, and cancer metastasis. 

Motivation and challenges
Cell deformation and migration are dynamic processes regu-
lated by a complex machinery with major implications on a 
number of key processes in biology including development, 

immune responses, and invasive pro-
cesses [1]. A method of choice for 
studying this mechanism lies in light 
microscopy, whereby living cells evolv-
ing in their three-dimensional (3-D) 
environment (both in vitro and in vivo) 
can be imaged over prolonged periods 
of time with limited invasiveness, pro-
ducing time-lapse sequences of volu-
metric 3-D images [2]. Due to the 
considerable complexity of cell defor-
mation and migration, visual analysis 
of such processes is no longer limited 

just by user bias and fatigue but also fails to apprehend large-
scale, population-wise patterns that may otherwise appear ran-
dom or disorganized. Systematic quantitative analysis and 
understanding of cellular dynamics is becoming a major interest 
for the signal processing and computer vision communities, given 
the wide range of computational challenges to overcome. These 
challenges principally fall into one of the following five categories, 
covering many aspects of the experimental pipeline (cf. Figure 1).

Image recovery
Modern optical light microscopy techniques have substantially 
expanded the diversity and reliability of live cell imaging appli-
cations, constantly improving on speed, penetration depth, 
and spatial resolution, though usually at the expense of the sig-
nal-to-noise ratio. An important part of the literature therefore 
focuses on the development of deconvolution and denoising 
techniques adapted to the peculiarities of bioimaging data (e.g., 
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mixed Poisson–Gaussian noise and anisotropic lateral-to-axial 
resolution [3]–[5]), while recent advances in computational 
optics (notably compressive sensing and superresolution tech-
niques) have given rise to new challenges in signal reconstruc-
tion and inverse problems [6]–[9]. 

Segmentation and tracking
The increasing diversity and complexity of environments in which 
motile cells can be observed has made their reliable detection and 
tracking most challenging, notably in crowded or cluttered envi-
ronments [10]. Added to the sheer amount of routinely produced 
3-D imaging data, the need to develop fast and semi- to fully auto-
mated approaches remains a long-standing challenge in the com-
munity [11], [12]. 

Shape representation
Although informative, raw shape and trajectory information are 
usually too large and complex to produce interpretable results, 
unless their dimensionality is suffi-
ciently and adequately reduced. 
Unfortunately, the natural variabil-
ity of shape configurations observ-
able within so-called homogeneous 
cell populations pose significant 
challenges in defining descriptors 
that are both robust to noise and 
retain enough specificity across 
populations. While much effort has 
been conducted to develop such 
descriptors in two-dimensional 
(2-D) [13] or pseudo-3-D [14], 
3-D-shape descriptors that permit robust morphological analy-
sis and facilitate human interpretation are still under active 
investigation [15]–[21]. 

Learning and interpretation
Linked to the issue of shape description is that of invariant analy-
sis of cell populations across various experimental conditions. The 
difficulty here lies in two aspects: 1) developing pattern recogni-
tion and machine-learning approaches able to capture the differ-
ences between populations while remaining robust to intraclass 
variability [22], [23] and 2) highlighting such differences in a 
human-readable form and ultimately leading to the inference of 
standardized computational models with the aim of deriving novel 
biological hypotheses [24]. 

Availability and reproducibility
The vast majority of developments in the community generally 
appears in the literature in the form of theoretical workflows 
that facilitate understanding and software (or hardware) imple-
mentation. Unfortunately, the increasing complexity of these 
protocols renders their implementation and validation very 
tedious for nonspecialists, hindering both their adoption and 
reproducibility. Ironically, while many scientific findings are 
based on computerized analysis, the associated computer codes 
are only rarely made public in contrast to reproducible research 
practices in other scientific domains [25]. Community efforts 
such as the Reproducible Research Initiative strive to make 
both code and data publicly available, although more support 
from publishers and/or research sponsors is required [26]. 

In the specific context of 3-D bioimaging, the image recovery 
and segmentation aspects have received extensive focus from the 
signal processing community over the last several decades, as 
illustrated by the recent introduction of challenges at the IEEE 

International Symposium on Bio-
medical Imaging, with special ses-
sions on image deconvolution 

(http://bigwww.epfl.ch/deconvolu-
tion/challenge), particle tracking 
[27], and cell segmentation and 
tracking [12]. The shape representa-
tion and machine-learning aspects 
have been comparatively less thor-
oughly investigated, even though 
they provide essential keys to deci-
pher the cell machinery. Here we 
review recent developments in the 

fields of cell-shape description and associated machine-learning 
approaches, highlighting the current state of the art and the chal-
lenges ahead toward a comprehensive understanding of cellular 
dynamics. We also review a number of open-source software solu-
tions that permit reliable and reproducible quantification of cellu-
lar images. We shall illustrate this review using the example of 
amoeboid cell deformation, which is a mechanism of strong 
interest in the life science community due to its importance in 
immune response, infectious diseases, and cancer metastasis. 
Amoeboid motion is characterized by the emission of localized 
protrusions at the cell surface that permit environment scanning 
and motion initiation (cf. Figure 2) [28], [29] and poses signifi-
cant challenges in terms of quantitative characterization and 
comparative phenotyping.

[Fig1]  Typical experimental pipeline for cellular (notably phenotypic) studies. Boxes marked with green and blue labels indicate the 
availability of associated open hardware and software developments, respectively.
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3-D-shape descriptors and the cell
Proper description of the cell shape in a numerical form is inher-
ently dependent on its underlying representation, i.e., how it was 
extracted from the image data [13]. While most segmentation 
methods usually produce voxel-based masks or distance maps as 
an indicator of the cell location and cell interior (analogous to the 
input data), outline-based approaches produce a description that is 
homotopic to the cell surface (e.g., using control points or param-
eterized curves [14], [30], [31]). From any of these representa-
tions, various low-level descriptors 
can be extracted (e.g., volume, sur-
face, elongation, ellipticity, compac-
ity, etc.), providing a coarse 
appreciation of the global shape 
conformation (most of these 
descriptors can be extracted using 
the approaches further reviewed 
below). However, when dealing with 
more complex shapes such as cells 
or organs, such low-level descrip-
tors quickly become sensitive to 
increasing amounts of noise and 
usually fail to capture subtle shape variations occurring at dif-
ferent spatial scales, from large conformation changes (e.g., 
elongation, contraction) to smaller variations at the cell surface 
(e.g., protrusions) [32]. Higher-lever descriptors based on multi-
scale decomposition become particularly interesting in this 
context, as they decompose the shape in a coarse-to-fine man-
ner, allowing one to restrict the analysis to the scale of interest 
and thereby increasing robustness to negligible or unlikely 
shape variations. These approaches typically fall into one of the 
three following categories, classified in increasing order of 
complexity. 

Landmark-based approaches
Landmark-based approaches are a popular choice for morpho-
logical studies [33], with numerous applications in medical 
imaging [34], [35], evolutionary biology [21], and face 

recognition [36]. The common denominator in these fields is 
the availability of a reliable low-dimensional model for the 
shapes of interest, allowing one to reduce the description of the 
shape (or its tolerated deformations) to a small number of con-
trol points (or parameters). This simplified representation in 
turn permits efficient registration, statistical analysis, and tem-
plate modeling [37]. Applications in cellular morphology are, 
however, not as common, mostly due to the fact that deforming 
cells generally have many more degrees of freedom that cannot 

be accurately captured using such 
methods (counterexamples can be 
found in specific biological applica-
tions, e.g., [38]). 

Graph-based 
representations
Graph-based representations fall in 
two subcategories, depending on 
whether they describe the interior 
or the outline of the shape of inter-
est. In the former case, the cell 
body is converted (e.g., from a ini-

tial binary mask) into a hierarchical treelike graph connecting 
virtual landmarks inside the cell. Typical examples include mor-
phological skeletons, medial axis transforms, or Voronoi tessel-
lations [39], [40]. Once the graph is obtained, local shape 
features at the cell surface (the leaves of the tree) are semanti-
cally segregated from large shape conformation (closer to the 
root). As the graph generation process may be subject to noise, 
adequate graph pruning algorithms are required to differentiate 
structures at the cell edge (e.g., filopodia from erratic spikes), 
thereby permitting an unbiased analysis of the cell deformation 
over time [40]. However, such approaches remain limited to 2-D 
analysis, and their extension to 3-D is computationally 
challenging. 

The latter category considers a surface-based graph 
representation of the shape of interest. While the topic of signal 
processing on arbitrary graphs is only in its early days [41], 
several methods have been developed for the specific case of 
closed surfaces (homeomorphic to the two-sphere), such as 
energy-minimizing graph matching (developed for protein sur-
face alignment [42]) and graph-based spherical wavelets 
(applied to cell-shape analysis in [18]). 

Moment-based approaches
These approaches consider the shape of interest as an arbitrary 
spatial distribution function that is then mathematically repre-
sented as a sum of known polynomial functions, thereby permit-
ting the extraction of geometrical moments with suitable 
invariants [43]. Such methods generalize traditional Fourier anal-
ysis to arbitrary distributions and therefore share the same 
descriptive properties: low-order moments describe the coarse 
conformation, while high-order moments retain information at 
higher frequency. For this reason, these approaches have been uti-
lized in many areas of image processing, with popular choices of 

(a) (b)

[Fig2]  Planar slices of two field of views representing (a) wild 
type and (b) chemically modified parasites. Distinguishing 
between these populations based on shape information is 
particularly challenging, even for the trained eye, and 
requires robust quantitative tools for shape description and 
machine learning.

Ironically, while many  
scientific findings are  

based on computerized  
analysis, the associated  

computer codes are only  
rarely made public in  

contrast to reproducible 
research practices in other 

scientific domains.
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bases including Lengendre, Zernike, Tchebichef polynomials (see 
[44] for a comparison), and splines [45]. 

In the context of cell-shape description, such approaches are 
generally not applied on the raw image data. Instead, a binary 
mask or outline of the shape is first extracted and then pro-
jected onto an appropriate basis [14], [16], [19], [20], [46], [47]. 
These methods can further be 
decomposed into two categories. On 
the one hand, the 2-D cell outline is 
projected directly onto a chosen 
basis (e.g., Fourier [46] or splines 
[14]), and the process is repeated on 
each slice of the cell shape to obtain 
a 3-D set of descriptors [14]. On the 
other hand, the surface of interest is 
first mapped onto the sphere using 
appropriate spherical parameterization techniques [48] and 
then projected onto a reference function basis living on the 
sphere. Two popular and complementary candidates in this fam-
ily are the spherical harmonics (SPHARM) [47] and spherical 
wavelets (SWAVE) [49], which significantly differ from the 
eponym graph-based approach, notably in the way they are con-
structed. In the former case, the spherical signal is projected onto 
a basis of Legendre polynomials, extending the classical Fourier 
analysis to signals on the two-sphere [cf. Figure 3(b)]. SPHARM 
therefore have global spatial support, and each coefficient 
describes the general conformation of the shape of interest at dif-
ferent spatial scales. Applications of SPHARM include molecular 
surface modeling [50], [51], medical-shape analysis [52], and cell-
shape analysis [15], [16], [19], [53]. In the latter case, the function 
basis is formed of wavelets (hence its name), and are constructed 
by analogy to wavelets in the plane via appropriate spherical pro-
jections [17], [20], [54]. Here the local spatial support provided by 

SWAVE is of particular interest to localize specific features along 
the surface [cf. Figure 3(c)]. 

While the function bases utilized here are not specific to cel-
lular shapes, other approaches have been proposed to increase 
their specificity by locally adapting the basis to the data set at 
hand (e.g., using the Laplace–Beltrami operator, as in [19] and 

[55]). Nevertheless, the use of 
standard function bases preserves 
two major advantages: 1) they are 
ubiquitousness in signal processing 
applications that propels the cre-
ation of ever-more efficient compu-
tational implementations and 2) 
they permit an unbiased descrip-
tion and comparison of shapes 
across multiple experimental condi-

tions, and also serve as a basis to perform shape synthesis (cf. 
Figure 3) or build so-called generative models of the cell [24]. 

Recognition, classification, and interpretation
In terms of dimensionality, shape extraction and description 
have led to simplified representations of the raw data from 3-D 
images (on the order of 108–10 voxels) down to a smaller set of 
descriptors (also called features) per cell (on the order of  
101–3). Unfortunately, these feature sets are rarely translatable 
to a concrete, biologist-friendly interpretation of the biological 
experiment, rather appearing as large arrays of poorly inform-
ative numbers. This motivates the following questions: Which 
features really matter? What is the influence of the experimen-
tal conditions on these features? How do they translate into 
biological terms? Machine-learning approaches are particu-
larly well suited to answer these questions, and choosing the 
appropriate technique depends on the application and how 
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easily the initial question can be cast into a machine-learning 
framework [23]. 

Machine learning consists of building computer models that 
accurately describe a given population of individuals with the ulti-
mate goal to either characterize subgroups of individuals with sim-
ilar properties, or to predict the properties of a new unknown (or 
simulated) individual [62]. Machine-learning techniques are gener-
ally split into two categories: 1) supervised techniques require that 
a subset of individuals in each subpopulations be manually anno-
tated to classify the rest of the data set, while 2) unsupervised tech-
niques learn the model directly from the inherent structure of the 
feature set without user intervention. Both families have their set 
of advantages and drawbacks, which 
we discuss next in the context of cell-
shape analysis (we refer the reader to 
[23] for an applications-oriented 
review, and [63] for a more theoretical 
introduction). 

Supervised techniques require a 
subset of the data to be annotated, i.e., one or more examples 
describing all known subclasses of the population must be indi-
cated beforehand. This so-called training set is then used to 
learn an optimal classifier. Popular approaches for cell classifi-
cation from image data include k-nearest neighbors [64], deci-
sion trees [65], and support vector machines (SVMs) [57]. These 
approaches can be further combined, resulting in so-called 
ensemble learning techniques, e.g., boosting [22] and random 
forests [66]. Supervised techniques are widely popular due to 
their robustness to noise and apparent intuitiveness and versa-
tility. Annotating a small finite number of examples is generally 
acceptable in many applications, while the classifier itself 
remains sufficiently generic to accept a wide range of applica-
tions. Unfortunately, some of these methods may suffer from 
overfitting when the dimension becomes much larger than the 
number of samples. Variable selection techniques provide a 
solution to this issue, while improving learning accuracy and 
often facilitating interpretation. Typical examples include for-
ward selection, backward elimination and sparsity-constrained 
classifiers [67]. The major limitation of supervised learning is 
that it requires class labels to be available: nonannotated sub-
populations will not be learned and, hence, not recognized, and 
by extension, novel unknown subpopulations (e.g., unpredicted 
cell phenotypes) cannot be discovered. 

Unsupervised techniques do not require a training set and 
can be applied to unlabeled populations. They learn the inherent 
structure of the data set using a predefined metric (e.g., a simi-
larity or distance measure between individuals), permitting 
homogeneous groups or dimensions to be distinguished. One 
usually distinguishes clustering techniques, which aim at 
extracting subpopulations sharing similar properties according 
to the considered metric, from dimensionality reduction tech-
niques, which aim at selecting a subset of essential principal 
components that best represent a high-dimensional data set to 
facilitate user interpretation. Classical clustering techniques 
include k-means [68] and Gaussian mixture modeling (GMM) 

[69], while dimensionality reduction 
techniques include principal com-
ponent analysis (PCA) [46] and 
independent component analysis 
(ICA) [70]. The major advantage of 
unsupervised learning is that the 
data labels need not be known in 

advance, alleviating the need for data annotation while allowing 
the discovery of unexpected subpopulations, giving them 
remarkable exploratory potential in biology [71]. Unfortunately, 
unsupervised techniques also have their drawbacks: they are 
more sensitive to noise, defining the appropriate metric for the 
data set at hand can be complex for high-dimensional data set, 
as is the interpretation of the results. 

It is worth pointing out that most of these techniques can also 
be applied directly to the raw image data without necessarily need-
ing a preliminary shape extraction and description step. Shape 
description becomes necessary as soon as both qualitative and 
quantitative characterization or modeling of the cell shape is 
required, notably when studying the effect of known experimental 
conditions on the cell phenotype. 

Availability and reproducibility
Emerging interdisciplinary fields such as bioimage informatics 
foster interactions across an ever broader portfolio of scientific 
expertise (this article only mentions six of them: optics, signal pro-
cessing, image segmentation, object tracking, shape description, 
and machine learning). Unfortunately, novel algorithmic develop-
ments in many of these fields are only rarely published in the form 
of ready-to-use software, while reimplementing the underlying 
method becomes increasingly challenging for the nonspecialist in 

[Table 1] Open-source software solutions with dedicated modules for cell-shape analysis. 

Name Reference Supported languages 2-D/3-D Shape descriptors Machine learning
CellClassifier [56] Matlab* 2-D Geometric Supervised
CellCognition [57] Python, C++ 2-D Geometric Supervised and Unsupervised
CellOrganizer [24] Matlab* 2-D, 3-D Splines Unsupervised (generative)
CellProfiler [22] Python, Visual Programming 2-D Geometric Supervised
EBImage [58] R 2-D Geometric (via R)
Icy [59] Java, Scripting, Visual Programming 2-D, 3-D Geometric, SPHARM (via plugins)
ImageJ/Fiji [60] Java, Scripting, Macro recording 2-D, 3-D Geometric (via plugins)
Tango [61] ImageJ, R 3-D Geometric (via R)

*MATLAB is licensed by Mathworks.

quantitative morphology  
of single cells is only the  
visible part of the digital 

bioimaging “iceberg.”
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addition to being time-consuming and error prone [25]. Fortu-
nately, the bioimage informatics community has been a proactive 
driver of the Reproducible Research Initiative [26] with the 
appearance of multiple software solutions for quantification in bio-
imaging over the last decades (cf. [72] and Table 1). Some of these 
frameworks rely on a so-called plug-in architecture, allowing their 
enrichment via third-party contributions, removing much of the 
redundant work including data loading and visualization, and 
streamlining the publishing process. Each platform will tend to be 
specialized in a specific discipline (mostly driven by its core devel-
opers), and current efforts in the community are devoted to pro-
vide higher interoperability across software, so as to combine the 
best solutions available for to tackle a given problem. Table 1 pro-
vides a nonexhaustive list of such software platforms, focusing spe-
cifically on the solutions available for cell-shape analysis and 

SPHARM as shape descriptors 
SPHARM are defined as 
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harmonic, k ,l m  is the expansion coefficient, and Plm  is 
the associated Legendre polynomial. 

Spherical harmonic analysis is a natural extension of tradi-
tional Fourier analysis for signals defined on the unit sphere. 
Hence, any arbitrary function f  defined on the sphere can 
be expanded using the SPHARM transform, given by 
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respect to the SPHARM basis, or more simply, SPHARM 

coefficients. 
To conduct a SPHARM expansion of the cell shape, its sur-

face must be written as a spherical function, which is done 
via so-called spherical parameterization techniques [47]. 
While some surfaces may not be bijectively transposable to 
the sphere by a simple radial projection (also referred  
to as nonstar-shaped surfaces), a classical approach is to 
project each Cartesian component of the surface inde-
pendently, yielding a vector of spherical functions 

( , ) ( , ) ( , )f f f fx y zi { i { i {= 6 @ [48]. Expanding f  thus yields 
three sets of SPHARM coefficients ( ) ( ) ( ) .C C C Cl

m
l
m

x l
m
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m
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Rotation invariant coefficients are subsequently obtained 
by considering their L2-norm: 
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SPHARM-based feature design for classification

Protocol
•	 SPHARM expansion of the cell surfaces (cf. “Spherical 

Harmonics as Shape Descriptors”) is conducted with 
an empirical precision of ,l 5=  yielding an array of 21 
rotationally invariant coefficients per cell (this value 
depends on the application, and defines the balance 
between shape and noise information). 

•	 The data set is then divided into groups of 
{ , , ..., }K 1 2 5!  randomly selected cells observed over 
{ , , , , , }Q 1 5 10 15 20 25!  consecutive frames (the start-

ing frame is random if Q  is less than the entire length 
of the video). We avoid imbalance in the training 
samples by randomly subsampling the larger class so 
that the sizes of both classes are identical. 

•	 Finally, the coefficients are indexed throughout the 
data set as ( , , )C i qcelll

m
k

t  , where { , , ..., }i n1 2!  is the 
sample indicator, { , ..., }k K1!  indicates the cell, and 

{ , ..., }q Q1!  indicates the time at which the frame is 
acquired. From this data set, one can design a struc-
tured combination of features. Here we illustrate two 
possible combinations: 

Population features ( )n  are obtained by averaging 
each coefficient over Q  frames for each cell of a group, 
yielding K21  features: 

	 ( , ) ( , , ) .i
Q

C i q1cell celll
m
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m

k
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=
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Temporal features ( )nu  are obtained by averaging each 
coefficient over a group of K  cells in each frame, yield-
ing Q21  features: 
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From these descriptors, a set of group structures can be 

derived: 
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[Table 2] A Comparison of several supervised classifi-
cation approaches for cell shape classification.

Classification method SPHARM feature set Error (%)

k-Nearest Neighbors [64] standard ( , )K Q1 1= = 43.96

population 33.75

temporal 26.25

combined 29.23

Decision Trees [65] standard ( , )K Q1 1= = 45.52

population 35.94

temporal 31.67

combined 30.94

SVM [57] standard ( , )K Q1 1= = 42.69

population 27.73

temporal 18.08

combined 20.00

Structured SVM [74] standard ( , )K Q1 1= = 40.45

population 31.36

temporal 17.69

combined 19.23
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quantification. Such software can be 
classified in two categories: general-
purpose image-based quantification 
software for which specific third-
party modules for cellular analysis 
have been developed (this is notably 
the case of Fiji/ImageJ [60] and Icy 
[59]), and more streamlined software 
dedicated almost exclusively to cell-based analysis (such as Cell-
Classifier [56], CellCognition [57], CellOrganizer [24], CellProfiler 

[22], EBImage [58], and Tango [61]). 
While some of these software pack-
ages limit their analysis to the 2-D 
case, the methods are in principle 
extensible to 3-D. This limitation is 
notably present in the field of high-
throughput, high-content screening 
(HT-HCS), where 3-D imaging con-

siderably increased acquisition and analysis times, alongside data 
management issues [22]. 
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[Fig4]  The performance comparison of several classification methods on various combinations of SPHARM features. Each table cell 
indicates the classification error for a particular combination of the number of cells per group (k) and the number of time points per cell 
( ),Q  as defined in “SPHARM-Based Feature Design for Classification.” (a) Population features ( .)n  (b) Temporal features ( .)nu   
(c) Population and temporal features ( .n, )nu

The road to building a 
the cell is paved with major 

difficulties in terms  
of mathematical modeling  

and signal processing.
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On the hardware side, recent efforts to make public blueprints 
and to increase the interaction between hardware and software has 
led to the development of so-called smart acquisition systems. 
Some of the key contributions on the hardware side include the 
Warwick Open Microscope System (http://wosmic.org) and the 
OpenSPIM project (http://openspim.org), while integrated hard-
ware and software approaches have been developed in several pro-
jects including nManager (http://micro-manager.org) and 
MicroPilot [73]. 

Case study: amoeboid cell deformation
In this section, we illustrate the use of shape description and clas-
sification in the context of studying morphology and motility of 

Entamoeba histolytica, a unicellular parasite responsible for 
the amoebiasis disease. Recent studies in vitro and ex vivo have 
suggested that parasites specifically modified to prevent their 
degrading of the extracellular matrix remained able to migrate 
at the same speed as unmodified parasites, possibly due to sub-
tle shape changes that simple descriptors could not fully cap-
ture [32]. Illustrative slices of the 3-D data set are presented in 
Figure 2. Here cells are segmented using active contours [30], 
and described by SPHARM features (cf. [16] and “SPHARM as 
Shape Descriptors” and “SPHARM-Based Feature Design for 
Classification”). Although other combinations of methods and 
descriptors are possible, our aim here is to show how an ade-
quate design of feature vectors may lead to discoveries of sig-
nificant and interpretable differences between populations that 
otherwise seem visually identical. 

Table 2 reports the comparative performance of several clas-
sification approaches (described in “Classification Methods”) 
with various combinations of features. The performance is eval-
uated by leave-one-out cross-validation, while the entire leave-
one-out process is repeated for ten trials to report the averaged 
performance for each method. Both the temporal features 
(averaged over groups of cells) and population features (aver-
aged over a fixed number of frames) are tested against variable 
group sizes, as illustrated in the error rate heat-maps presented 
in Figure 4. As the group size increases, the classification per-
formance systematically improves, suggesting that more robust 
classification can be achieved by group-based analysis. Table 2 
further indicates that the best performance is obtained either 
using temporal features or a combination of temporal and pop-
ulation features. However, combining both feature sets does 
not necessarily yield the best performance, suggesting that 
temporal information is more discriminant. Finally, structured 
SVM imposes sparsity to select an optimal subset of features 
and has better classification performance. Also, by specifying 
the most predictive subset of features, the structured SVM has 
the advantage of providing feature interpretability. While each 
feature alone does not necessarily translate directly to biologi-
cal knowledge, this example illustrates that a careful and sys-
tematic design of the features can highlight significant and 
unexpected discrepancies between cell populations, which in 
turn can potentially lead to new interpretations and hypotheses 
that enhance the design of the next experiment. 

Future perspectives and challenges
Numerous breakthroughs in imaging and computational tech-
niques have had a considerable impact on the amount of quantita-
tive data that describe the behavior of single cells evolving in their 
3-D environment. After suitable standardization, such data become 
amenable to proper mathematical characterization, invariant 
description, and classification. Thus, these tools have exciting 
potential to reveal the complexity of biological mechanisms at all 
spatial scales: 1) at the single cell level, the mechanisms and signals 
responsible for the transition between modes of migration (notably 
in cancer development); 2) at the group level, the short- and long-
distance signaling queues that induce cells to interact, differentiate, 

classification methods  
We consider an input feature set x Ri

p!  and the class 
labels { , },y 1 1i ! + -  where , ..., .i N1=  Under this nota-
tion, we can describe the classification methods used in 
this review as follows. 

k-Nearest Neighbors 
Let ( )xNk  be the neighborhood of x  found by the k  
nearest samples, defined by some metric, e.g., Euclid-
ean distance. The decision rule is defined by a majority 
vote on { | ( )} .x xy Nii k!

Decision Trees 
The decision tree is an greedy algorithm that adds split-
ting nodes to the tree by defining half planes 

{ | }xP x sj1 #=  and { | },xP x sj2 2=  in which x j  is the 
splitting variable and s  is the splitting point. At each can-
didate node, compute the impurity, e.g., the Gini index 

	 ( ) ( ),I p p p p1 11 1 1 1= - + -- - + +

in which pk  is the fraction of class k  observed at that 
node. The splitting nodes are selected to improve the 
homogeneity sequentially, and the decision at each leaf 
node is by majority vote. 

SVMs 
Let ( )x wf x b= +l  be a decision function that assigns 
observation x  to ( ( )),xsign f  then ( )xf 0=  is a hyper-
plane in .Rp  In the general case, where classes are not 
linearly separable, the SVM is written as 

	 ( , ) ( )min xV f R fi
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Structured SVMs
The structured sparse SVM is formulated as an SVM but 
with a different regularization: 
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where Ig  is the set indexing the variables that are in the 
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or migrate to distant locations (e.g., for tissue repair and immune 
responses); and 3) at the tissue level, how information is propa-
gated across a dense cell network, and how this information is 
locally interpreted to drive cell intercalation, differentiation, and 
renewal (e.g., during embryo- and 
morphogenesis). In this article, we 
have highlighted some of the latest 
developments in quantitative tools 
and associated software packages to 
study some of these processes and 
illustrated how group-based analysis 
of cell morphology provides a much 
more powerful and discriminant 
description of a cell population as 
compared to single-cell analysis, while 
temporal information carries a significant potential to improve the 
overall classification performance. Yet, quantitative morphology of 
single cells is arguably only the visible part of the digital bioimag-
ing “iceberg.” 

The next major challenges in the bioimaging and biosignal 
processing field lie in studying spatiotemporal processes beyond 
single cells, from the nanoscopic to the macroscopic scale. At the 
subcellular level, the mechanisms that underlie cell deformation 
and motility are still poorly understood, mostly due to the lack of 
proper visual insight into the various architectural components 
(down to individual proteins) forming the cell cytoskeleton. The 
road to building a computational model of the cell (not to men-
tion the huge variety of cell types in plant or animal models) is 
paved with major difficulties in terms of mathematical modeling 
and signal processing and will require the development of novel 
biophysics-inspired algorithms to:  understand how the cytoskele-
ton is formed, acts, and reacts to internal and environmental sig-
nals; and generates force and adhesion that ultimately lead to 
deformation, movement, and division. At the macroscopic level, 
studying biological processes at large spatial and temporal scales 
requires the integrating of single-cell analyses over millions of 
cells and hours of imaging data in multiple modalities and experi-
mental conditions, raising major visualization and computational 
bottlenecks. One example of such a challenge is illustrated by the 
recent advances in selective plane illumination microscopy and 
its application to the reliable observation of embryonic develop-
ment in numerous animal models, from the single cell up to tens 
of thousands of cells [10]. Such data sets have already initiated 
many developments in image denoising, cell segmentation, cell 
tracking, and data manipulation software, however, comprehen-
sive modeling of the morphology and trajectory of these cells and 
their clustering into biologically relevant subpopulations remain 
open challenges. 
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